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STRESSES NEAR A FLAT INCLUSION IN BONDED
DISSIMILAR MATERIALSt
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Lehigh Universily, Bethlehem, Pennsylvania 18015

Abstract-The plane elastostatic problem for bonded materials containing a flat inclusion is considered. It is
assumed that the inclusion is located parallel to or on the interface and may be rigid or elastic with negligible
bending rigidity. The integral equations for various cases are derived and their solutions are described. The
stress state around the singular points are investigated and a pair of stress intensity factors similar to that for
crack problems are defined. A series of numerical examples for two bonded half planes and for a half plane
is worked out. The stress intensity factors are presented as functions of the ratio of the distance from the interface
to the length of the inclusion.

1. INTRODUCTION

IN STUDYING the fracture of multi-phase materials and structures composed of bonded
dissimilar solids, it is important to evaluate the stresses around imperfections such as
cracks and inclusions. The edges of these imperfections are lines of stress singularity.
Hence, they are expected to be the locations around which the fracture of the medium
would generally nucleate. The stress distribution around a crack lying parallel to and
on the interface of bonded dissimilar materials was considered in a previous series of
papers [1-6].

In this paper we consider the plane elastostatic problem for an inclusion located
parallel to the interface of two bonded half planes. The problem of interface inclusion
for two bonded materials and the cover plate problem for a half plane are recovered as
the limiting cases of the general problem. It will be assumed that the thickness of the
inclusion is very small compared to its lateral dimensions. Thus, analytically, it can be
approximated by a singular surface across which the displacement vector is continuous
and the stress vector suffers a discontinuity. The problem will be solved for three types of
inclusions. First, it will be assumed that the inclusion is completely rigid. In this case both
normal and shear stresses across the inclusion will be discontinuous. In the second, we
will assume that the inclusion is an inextensible surface with zero bending rigidity. Here
the normal stress will be continuous and the shear stress will have a discontinuity. Finally,
as a third model we will assume that the inclusion is an elastic sheet with, again, negligible
bending rigidity. In this case too, the normal stress will be continuous, the shear stress will
have a discontinuity, and the shear stress difference will act as a body force on the elastic
sheet.

In this study we are mainly interested in evaluating the disturbance in the stress state
resulting from the existence of the inclusion in the medium. Hence, it will be assumed that
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(1.1)

the displacement field in the bonded materials without the inclusion is known, and the
only "external loads" in the disturbance problem are the displacements at the presumed
location of the inclusion. Referring to Fig. 1, if uo(x, y), vo(x, y) are the displacements in
material 2 for the inclusion-free medium under the given external loads, the input functions
for the disturbance problem will be

uix, 0) - u4(x, 0) = - uo(x, 0)

v2(x, 0) - v4(x, 0) = - vo(x, 0), ( - a < x < a)

y

x
3

FIG. 1. The geometry of the bonded medium containing an inclusion.

where, the subscripts 2 and 4 refer to the material 2 and the inclusion 4, respectively.
In this problem we will further assume that the length of the inclusion, 2a, and its distance

from the interface, h, are sufficiently small compared to other planar dimensions of the
bonded planes, so that in formulating the disturbance problem the media 1 and 2 may
be treated as being semi-infinite. Since x = 0 is the plane of geometric symmetry, the
general problem may be studied as the sum of a "symmetric" and an "anti-symmetric"
problem by simply decomposing the external loads into their symmetric and anti-sym­
metric components. In this paper we will consider only the symmetric problem. The anti­
symmetric part of the problem may be solved by following a similar procedure, resulting
in only minor changes in the kernels of the integral equations.

2. FORMULAnON OF THE PROBLEM

Consider the plane elasticity problem for the bonded materials containing an inclusion
shown in Fig. 1. For the purpose of formulating the problem, the part of the half plane 2,
-h < Y < 0 will be treated as a separate layer, 3. Let ui ' Vi' (i = 1, ... ,4) refer to displace­
ment components in materials 1, ... ,4 and similarly the subscripts i = 1, ... ,4 in (Jixx, •..

refer to the stress components in various media. The problem will be solved for the external
loads given by (1.1). In the symmetric problem uk(x, y) = -uk( -x, y), vk(x, y) = vk( -x, y),
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(2.1)

(k = 0,1, ... ,4). Hence, for the stress disturbance problem the displacements and stresses
may be expressed by the following Fourier integrals [1]:

ub,y) = ~f'" [(A k1 +yAk2 )e- I1Y +(Ak3 +yAk4)e"Y] sinocxdoc
1t 0

1 2 f'" [ ( K -1 )2p/JkXY = ~ 0 - oe(Ak1 +Ak2Y)+T Ak2 e-
I1Y

+(oc(Ak3 +Ak4y) - Kk~ 1Ak4 ) el1Y] sin oex doc

(2.2)

(2.3)

(2.4)

(2.5)

where Akioc), (k = 1,2,3; j = 1, ... ,4) are unknown functions of oc and Kk = 3 -4vk for
plane strain and Kk = (3 - vk)/(l + vk) for generalized plane stress, Vk, Ilk being the elastic
constants. The conditions at Y = =+= 00 require that

(2.6)

At Y = °and y = -h we have the following continuity conditions:

(2.7)

(2.8)

(2.9)

By using the conditions (2.6)-{2.9), ten of the twelve functions Akj appearing in (2.1)­
(2.5) can be eliminated. The remaining two constants are determined from the mixed
boundary conditions at y = 0. These are the statements of the physical conditions that
on y = 0, Ixl < a the displacements are specified and on y = 0, Ixl > a the stress vector
is continuous. Thus if we define

Ixl < a. (2.10)
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The conditions at y = 0 may be expressed as

lim [: Uz(x,y)-: U4(X)] = fl(X),
Y~O+ uX uX

lim [: vz(x, y)-: V4(X)] = fz(x),
Y~O+ uX uX

Ixl < a

Ixl < a

(2.11 )

(J zYY(x, 0) - (J 3yiX, 0) = 0,

(J ZXY(x, 0) - (J 3xy(X, 0) = 0,

Ixl > a

Ixl > a.
(2.12)

In the three types of inclusions mentioned in Section 1, conditions (2.11) and (2.12)
may further be reduced as follows:

(a) Rigid inclusion. In this case ou4/ox = 0, OV4/OX = 0 and (2.11) becomes

1
. a
1m -;-uz(x, y) = fl(X) = fl( -x),

Y~O+ uX

lim : vz(x, y) = fz(x) = - fz( -x),
Y~O+ uX

Ixl < a

Ixl < a

(2.13)

whereas (2.12) remains the same.
(b) Flexible, inextensible inclusion. Since the bending rigidity of the inclusion is zero,

in this case (2.11) and (2.12) may be simplified as follows:

(JZyy(x, 0) = (J 3Yix, 0), -00 < x < 00, (2.14)

lim : uz(x, y) = fl(X),
Y~O+ uX

(J ZXy(x, 0) - (J3XY(X, 0) = 0,

Ixl < a

Ixl > a

(2.15)

(2.16)

(c) Flexible, elastic inclusion. In this case too, the bending rigidity of the inclusion is
zero and the conditions at y = 0 become

(JZyy(x, 0) = (J 3YY(X, 0), -00 < x < 00, (2.17)

lim [: uz(x, y)-: U4(X)] = fl(X),
Y~O+ uX uX

Ixl < a (2.18)

Ixl > a. (2.19)

Note that in the problems (b) and (c) (2.14) and (2.17), respectively, provide another algebraic
expression in Ak}{a) and only one unknown function has to be determined from the mixed
boundary conditions. Also note that (b) is a special case of (c) in which J.l4 = 00. Thus, in
deriving the integral equations only the cases (a) and (c) will be considered.
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(a) The integral equations for the rigid inclusion

After eliminating ten of the functions Akj by using (2.6H2.9), the mixed boundary
conditions (2.12) and (2.13) may be expressed as

(2.20)

Ixl > a,

(2.21)

Ixl < a,

where

(2.22)

(2.23)

b
t

= KIJ12- K2J11 b
2

= J11 +KIJ12 .
Kl(J12 -J11) , Kt (J12 -J11)

Thus, in the system of dual integral equations (2.20) and (2.21) there are only two unknown
functions, B3(1X) and B4(1X).

We will now define the following two new unknown functions:

a2Yix, 0) - a3yy(X, 0) = P2(X),

a2xix, 0)-a3xix, 0) = Pl(X)

and note that Pl(X) = 0 = P2(X) for Ixl > a. From (2.20) and (2.23) we obtain

A(IX) = J12(1 +K2)(2aB3- 2K2B4 ) = fa P2(t) cos at dt,
K2 0

B(a) = J12(l +'(2) 2aB3 = fa Pl(t) sin at dt.
K 2 0

(2.24)

After normalizing the distances with respect to the half length of the inclusion, a, and
using the relation

J

l foo Jl p(t)dtlim p(t)dt e-aYsina(t-x)da=
y-o+ -1 0 -1 t-x

(2.25)

from (2.21), (2.22) and (2.24) we obtain

1 fl (t) f1 2
- ~ dt+ L kk/t, x)p/t) dt =
1t -1 t-x -1 1

Ixl < 1, k = 1,2 (2.26)
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where
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(2.27)

and h stands for h/a. The static equilibrium of the inclusion requires that

k = 1,2. (2.28)

Thus, (2.26) will be solved subject to the conditions (2.28).
For h --+ 00, kij --+ 0 and (2.26) reduces to a pair of uncoupled equations for the plane

with a rigid line inclusion.
In another special case when h --+ 0, the expressions for B I and B2 given by (2.22)

become

Taking this into account, using the relation

lim II p(t)dtfOO e-aYcoslX(t-x)dlX = np(x)
y~O+ -I 0

and defining the new unknown functions PI and P2 as

(J2YY(X, 0) - (J IYY(X, 0) = P2(X)

(J2XY(X, O)-(JIXY(X, 0) = PI(X)

from (2.21) we obtain

(2.29)

(2.30)

(2.31 )

1II PI(t)d ( ) _ 4J.l2(I+K2h'f( )-- -- t+YP2X-Ix,
n -1 t-x c

1II P2(t)dt+ () _ 4J.li1+ K2h'f( )
~ -- YPI X - 2 X ,
n _It-x c

Ixl < 1

Ixl < 1

(2.32)
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K1(/12 +K2/11)-K2(/11 +K1/12)
}' =

K1(/12 +K2/11)+K2(/11 +K1/12)

C = K1/12 - K2/11 +(/11 - /12)K~ .

/11 +Kl/12 /12 +K2/11
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(b) The integral equation for the elastic inclusion

For this problem the mixed boundary conditions are given by (2.18) and (2.19). If
we define a new unknown function p(x) by

(2.33)

from the static equilibrium of the inclusion we obtain

(2.34)

where, h4 is the thickness and /14' K4 are the elastic constants of the inclusion. From the
basic derivation (2.20) and (2.21), taking into account (2.17H2.19) and (2.34), the dual
integral equations for this problem may be obtained as

Ixl > a (2.35)

Ixl < a (2.36)

with K2B4 = aB3 and B 1 , B 2 as given by (2.22). From (2.29) and (2.35) we have

C(a) /12(l +K2 ) 2aB
3

= fa p(t) sin at dt.
K 2 0

(2.37)

Substituting this into (2.36), using (2.25), and again normalizing with respect to a, we
obtain

Ixl < a

(2.39)

(2.38)
where

1 foo 1 [b 1 (2ah -K2)2 ] -2ah .
k(x, t) ="ii 0 2K

2
b

2
+ l-K

1
(b

1
-b

2
) e sm a(t-x) da,

). _ 1+K4 /12
, - 1+K2 2/14h4'

Note that the integral equation for the inextensible inclusion is obtained by simply letting
A. = 0 in (2.38).
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In the special case when h -4 0, k(x, t) becomes a simple Cauchy kernel [see, (2.25)]
and (2.38) reduces to

(2.40)

If we now let III = 0, we have b1 = b2 = 1 and (2.40) becomes

1 I 1
p(t) IX 4112- -dt-A p(t)dt = ---!l(X),

n -It-x -1 I+K2
Ixl < 1 (2.41 )

which is the integral equation for the problem of elastic cover plate [7]. Equations (2.38),
(2.40) and (2.41) must, again. be solved under the following equilibrium condition:

f 1 p(x) dx = 0. (2.42)

3. SOLUTION OF THE INTEGRAL EQUATIONS

To solve the system of singular integral equations (2.26), the method described in [8]
will be used. Around the singular points =+= L the unknown functions Pk have integrable
singularities. Thus, by following the procedure of[9], from the examination of the dominant
part of the system (2.26) it can be shown that the fundamental function of the integral
equations is

(3.1)

Observing that this is the weight function of the Chebyshev polynomials Tn(x), the singu­
larities of the integral equations (2.26) may be removed by defining the unknown functions
as follows:

P1(X) = w(x) I:an T2n-1(X)
1

P2(X) = w(x) I bnT2n(x)
o

(3.2)

where an, bn are unknown constants and the symmetry conditions P1(X) = -P1( -x),
P2(X) = P2( -x) have been taken into account. From the equilibrium conditions (2.28)
and the orthogonality of T,.(x), it is clear that bo = 0. To determine the constants an' bn
(n = 1,2, ...), we substitute (3.2) into (2.26) and use the following relation [10]

1I1 T,.(t)dt {o ,
;, -1 (t-x)(l-t2y~= Un - 1(x),

n=O
n> 0,

Ixl < 1
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(3.4)

Ixl < 1
00

I [bnU2n-l(X)+ anH~~_l(X)+bnH~;(x)J =
1

to remove the singularities. In (3.3) Un - l (x) is the Chebyshev polynomial of the second
kind. Equation (2.26) then becomes

~ 11 12 2112(1 +K2)
L... [anU2n-2(x)+anH2n-l(X)+bnH2nJ = - f l(x)
1 K2

where

(3.5)k' Jl Tm(t)
H,j(x) = kk/X, t) ( _ 2)t dt.

_lIt

Equations (3.4) are further reduced to a system of linear algebraic equations in an' bn by
multiplying the first equations by U2k- 2 and the second equation by U2k-1' (k = 1,2, ...)
and integrating in (-1, 1). This system of equations may then be solved by the method of
reduction [11].

In a similar way, the solution of the integral equations (2.38), (2.40) and (2.41) may be
obtained in the following form:

00

p(x) = (1-X2)--t~>nT2n_l(X)
1

(3.6)

which satisfies the condition (2.42).
The system of integral equations (2.32) may easily be obtained in closed form by

defining
(3.7)

and using the function-theoretic method outlined in [9]. From (2.32) and (3.7) we find

1 Jl ¢(t) dt
----= ---y¢(x) = g(x), Ixl < 1 (3.8)
m -1 t-x

where

¢(x) may then be obtained as

¢(x) = F+(x)-F-(.x),

F z - z (_1__1Jl g(t)dt )
( ) - R() 1-y 2ni -1 (t-z)R+(t) +C ,

R(z) = (z-l)"(z+l)/l,

(3.9)f3 = -t+iw,1 .
01: = -2-IW, 1 (1 +Y)w = 2n log 1_ y ,

where the constant C is obtained from the following equilibrium condition

f1 ¢(x) dx = O. (3.1 0)
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4. STRESS STATE AROUND THE SINGULAR POINTS

(4.1)

(a) The rigid inclusion

Even though the solution of the integral equations discussed in the previous section
directly yield some important information about the problem, it is desirable to have a
method of obtaining the stress state in the medium, particularly around the singular points
=+= 1. Going back to the definition of the stresses (2.3H2.5), (which have integrable singu­
larities at y = 0, x = =+= 1), after some algebra, the dominant terms in these expressions
may be obtained in terms of the functions A(a) and B(a) defined by (2.24) as follows:

1 foo [ K 2 -1 ] ..0'2yy(X, y) = - A(a) +-.--B(a) e -ay cos ax da +0(r 2
),

1t 0 K 2 + 1

1 foo [ K 2 -1 J' ,0'2x/X, y) = - B(a)+--A(a) e- ay sm ax da+O(r'),
1t 0 K 2 +1

If 00 [3-K 3+K ]0'2xx(X, y) = - __2A(a) 2B(a) e -ay cos ax da +O(rt ),
1t 0 1+K2 1+K2

If we now substitute from (2.24) and (3.2) into (4.1) and use the following relations (see,
for example, [12J),

fl ~Jn d )n 1t
( 2 t cos at t = (-1 -2 J 2n(a),

o 1-t)

fl T2n - l(t). d (l)n- I1t J ( )2)t sm at t = - -2 2n - I a ,
o (l-t

f 00 cos ax f00 cos ax
J 2n(a) e- ay . da = (_1)n Jo(a) e- ay . da

o sm ax 0 sm ax

nIsin fJ/2
+ O(r) = (-1) J(2r) cos fJ/2 +O(r),

f00 cos cxx f00 cos ax
J 2n _ I (a) e- ay . da = (- 1)n - I J I (a) e- ay . da

o sm ax 0 sm ax

r _ - _ 1 n- I ~1_ cos fJ12
+O( ) - +( ) J(2r) sin fJ/2

+O(r), rei8 = (x-1)+iy

the stresses around the singular point y = 0, x = 1 may be expressed as

1 [ fJ K 2 + 1 . fJJ t
0'2yy(r,fJ) = J(2r) klcos 2 + K2_1k2sm2 +O(r),

1 [ K 2 +1 . 8 8J t
0'2xy(r,8) = J(2r) - K

2
-1 k l sm 2+ k2 cos 2 +O(r),

1 [3+K2 8 3-K2 . 8J t
0'2xx(r,8) = J(2r) - K

2
-1 kl cos 2+K2_1k2 sm 2 +O(r)

(4.2)

(4.3)
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(4.4)

where the "stress intensity factors" k i and k2 are found in terms of an and bnas follows:

"2 -1 00

k i = - 2(~2 + 1) ~ an

"2 -1 00

k2 = 2("2+ 1)t bn '

To evaluate the stresses and displacements elsewhere in the composite medium, one
has to go back to the general expressions (2.1H2.5), express the functions Aki(X) in terms
of A((X) and B((X) and through (2.24), in terms of PI and P2' and evaluate the integrals.
The procedure is straightforward but very time-consuming. From the view point of fracture
analysis, however, the knowledge of k i and k2 is sufficient.

Here we note that if the inclusion is imbedded into a homogeneous medium, as seen
from (4.3), the stresses have a simple r-! type singularity. On the other hand, the solution
given by (3.9) indicates that if the rigid inclusion is on the interface of two dissimilar
materials, the stress singularity is of oscillating nature, even though it has the same - t
power. This behavior is identical to that observed in bonded dissimilar materials con­
taining a crack.

(b) The elastic inclusion

Following a procedure similar to that outlined for the rigid inclusion above, for the
flexible elastic inclusion the stresses in the neighborhood of y = 0, x = 1 may be expressed
as

(4.5)

(4.7)

3 100

(J2xx = (1 ) C((X) e-~y cos (Xx d(X +O(.)r),
1t +"2 0
rei9 = (x-1)+iy

where C((X) is given in terms of p(t) by (2.37). Now, substituting from (3.6) and (2.37) into
(4.5) and using (4.2), the stresses around the singular point (1,0) are obtained as follows:

k 0
(J2Yk,O) = .)(2r) cos 2+0(.)r),

(J2xk, OJ = .)~r) sin ~+O(.)r), (4.6)

3k 0
(J2xx(r,O) = - .)(2r) cos 2+0(.)r),

where the stress intensity factor, k, is found to be

1 00

k = LCn -
2("2 + 1) 1
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5. NUMERICAL RESULTS

Numerical examples for the problems discussed in this paper will be given for the
following input functions:

(5.1)
oVo- = -fz(x) = O.ox

As output, only the stress intensity factors have been calculated. The results are shown in
Figs. 2-4.

1.0 ----------------

2.0ha
1.0

0.5 \--........_.1..---'-_..I...---'-_-l----.L_-'----''---'

o
0.04

k2

kO

-0.04

o

o 1.0 h 2.0
-0

FIG. 2. The stress intensity factors for a rigid inclusion. Loading: Uo = £ox, Vo = O. Materials: I, aluminum
(E 1 = 10' psi, VI = 0·3); 2, epoxy (E2 = 4·5 X 105 psi, V2 = 0·35), ko "" Jl2£oJ(a)(K2 I)/K2.

Figure 2 shows the normalized stress intensity factors kdko, kz/ko with

"2- 1
ko = Itz8o.J(a)-=-- (5.2)

"z
plotted as functions of h/a, where h is the distance of the inclusion to the interface and
a is the half length of the inclusion (see Fig. 1). The constants k1 and kz are related to the
stresses around the end points of the inclusion through the expressions given by (4.3).
In this example the elastic constants of the materials are selected as (ftdltz) = 23·077,
VI = 0·3, Vz = 0·35 (roughly aluminum and an epoxy combination). Figure 3 shows the
similar results for a half-plane containing a rigid inclusion [i.e. (ltdItZ) = 0, Vz 0·35].
These figures indicate that as h/a -+ 00, the stress intensity factor ratios ktlko and kz/ko
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15

1.0 2,0

FIG. 3. The stress intensity factors for a rigid inclusion in a half plane. Loading: Uo sox, Vo = O.
Material: v = '11 2 = 0·35, {/It/Jld = 0, ko = /l2s0-!(a){Kz 1}/K2'

---- ----------------------------
1'-1>0

2.0h
Q

1.0
0.4 L.----l_-J-_...1-_.L.---I_--L-_..J-_.l...---J._....J

o

FIG. 4. The stress intensity factors for an elastic and an inextensible inclusion. Loading: Uo CoX,

Vo = O. Materials: 2, epoxy (£z = 4·5 x lOs psi, '112 = 0·35); 1, aluminum (£) = 107 psi, V1 = 0·3) or
(p.t//lz) = 0, £4 = 107 psi, \'4 = 0·3, ko = 1J2I'.O-!(a)!K2·
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(5.4)Ixl < 1.

approach 1 and 0, respectively, which are the theoretical values for a homogeneous plane
containing a rigid inclusion. As h/a decreases, the magnitude of the dominant stress
intensity factor for this loading, kl' increases for J1.1 > J1.2 and decreases for J1.1 < J1.2'
This behavior which is physically expected is the opposite of that observed for the same
composite medium with a crack as the imperfection.

Figure 4 shows the results for an elastic and an inextensible inclusion, both with zero
bending rigidity. In this case there is only one stress intensity factor which is plotted in
normalized form k/ko as a function of h/a, where ko is given by

ko = J1.2BO.j(a)/K2. (5.3)

The stress state around the singular points is related to k through (4.6). From the figure
it is again seen that for both the elastic and the inextensible inclusions, if J1.1 > J1.2' the
stress intensity factor is greater than the respective values corresponding to the infinite
homogeneous plate with a central inclusion [i.e. (h/a) = co], whereas for (J1.t!J1.1) = 0,
the stress intensity factor is smaller than these asymptotic values. In the inextensible
inclusion problem, for h = co we have k(x, t) = 0, Pc = 0 and (2.38) becomes

~Jl p(t) dt = (1 +K1)2J1.2BO,
n -1 t-x K 2

From (3.3) and (3.6) it is seen that (5.4) has the following solution:

Ixl < 1 (5.5)

from which, by (4.7) and (5.3) (and a = 1) the stress intensity factor ratio k/ko is found to
be unity. The elastic inclusion problem does not have a closed form solution.

For h = 0 the results are obtained from the solution of (2.40). Thus, in this problem
as h ...... 0, the stress intensity factor approaches a definite limit. This is not the case in the
rigid inclusion problem, in which for h = 0 the nature of the system of integral equations
and, as a result, the behavior of the solution are different than that corresponding to
h -=F O. This may be seen by comparing (2.26) and (2.32) (where the former is a system of
integral equations of the first kind, and the latter is of the second kind) and the solutions
(3.2) and (3.9) (where the former has a simple r- t type singularity and the latter has an
oscillating singularity).
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A6cTpaKT-Mccne,lJ.yeTcli nnOCKall ynpyrocTaTIl'lecKali 3a,lJ.a'la, ,1l.JIli COe,1l.HHeHHbIX MaTepHaJIOB, B KOTOPblX
HaXO,1l.IlTCli IIJIOCKoe BKJIIO'IeHHe. npe,1l.nOJIaraeTCll, 'ITO BKJIIO'IeHlle paCnOJIOlKeHHOe napaJIJIeJIbHO K
rpaHllue noaepXHOCTH pa3,lJ.eJla, HJIIl Ha rpaHHue. OHO MOlKeT 6bITb lKeCTKIlM IlJIH ynpyfllM, C He3Ha'l1l­
TeJIbHo.l!. lKecTKOCTblO Ha 1l3fH6. BbIBO,1l.11TCllIlHTerpaJIbHble ypaBHeHHlI ,lJ.JllI pa3HblX CJIY'laeB II OlJllCblBalOTCli
llX peWeHHll. MCCJIe,1l.YIOTCli HanplilKeHHble COCTOllHHll, BOKpyf cHHryJIllpHbIX TO'leK. Onpe,1l.eJIlllOTCll
napbl <paKTopOB llHTeHCllBHOCTIl HanplllKeHllit, nOXOlKile Ha TaKHe lKe ,lJ.JllI 3aAa'l co WeJlblO. Pa3pa6oTaHa
cepHll '111CJIeHHbIX npHMepOB, }:\Jlll ,1l.BYX COe,llllHeHHbIX nOJlynJlocKocTeit Il AJIlI nOJIynJIOCKOCTIl. <IlaKTOpbl
IlHTeHCliBHOCTIl HanplllKeHllit llBJllIlOTCll <PYHKUllllMH OTHoweHllll paCCTOllHllB OT fpaHIlUbl pa3,lJ.eJIa Il
,1l.JIllHbI WeJIH.


